

NAVAL POSTGRADUATE **SCHOOL**

A Framework for Integrating the Development of Swarm **Unmanned Aerial System (UAS) Doctrine and Design**

www.wired.com

CDR Katy Giles, USN Naval Postgraduate School Systems Engineering Monterey, California 8 June 2016

www.wikipedia.org

WWW.NPS.EDU

- Unmanned systems have been rapidly fielded in response to urgent needs from combatant commanders resulting in reduced mission effectiveness and suitability.
 - RQ-4 Globalhawk (2007) not operationally suitable.
 - MQ-9 Reaper (2008) found operationally suitable and effective after significant engineering retrofits from the original Predator (2001) and a long-delayed test program.
 - RQ-21A Blackjack (2015) assessed as neither operationally suitable nor effective.
 - Trend likely to continue as UAS technology develops faster than prescribing doctrine.

www.northropgrumman.com

www.af.mil

- Develop framework for swarm UAS design that integrates doctrine and technology into system design.
- Develop a common "playbook" from which common swarm tactics and missions can be formulated.
- Identify missions for which swarm UAS are best suited.

- Military doctrine provides standardized conceptual framework for connecting strategy, operations, and tactics.
 - Influenced by technology, the enemy's capabilities, organizational structure, and geography.
- Swarming origins:
 - British vs. Spanish Armada in 1588, British vs. swarming German U-boat wolf packs in the North Atlantic, Japanese kamikaze attacks against US Navy, Al Qaeda's strikes on multiple US targets on 11 Sept. 2001, and typical NGO operations.
- What will modern swarming doctrine look like?
 - Transition from "few and large" forces to "many and small" units.
 - Centralized strategy; widely distributed, smaller units executing pulse-like tactics.

- Orchestrated control one agent selected as temporary leader based on specified factors (e.g., location, state, mission scenario).
 - Architecture is somewhat robust, but not scalable to large or geographically dispersed swarms, and places significant processing burden on one agent.
- Centralized control resembles traditional military command and control (C2).
 - Requires a hub-and-spoke communication architecture that limits autonomous behavior, and allows for single point of failure.
- Distributed control characterized by absence of leader; swarm decisions made via collective consensus among agents.
 - Robust and scalable, but requires communication network that will support potentially increased data traffic, such as wireless, mesh communication networks.

References: Dekker 2008, Chung et al. 2013

- Hybrid C2 architectures can be used to maximize strengths of each:
 - US Navy's Cooperative Engagement Capability anti-air warfare system utilizes a distributed architecture for situational awareness data and an orchestrated architecture for target selection.
 - Finite State Machines (FSM):
 - Have been shown to be effective in modeling multivehicle autonomous, unmanned system architectures.
 - Applicable to military swarm systems performing high risk missions.
 - Probabilistic FSMs can be used to allow for bounded behavior variability.

- Dudek's taxonomy of swarm robotics.
 - Seven design variables.
- Bottom-up, behavior based design typical for swarm systems.
 - Brooks subsumption architecture layered FSM approach.
- Top-down design methods less common for swarm systems.
 - Brambilla's property-driven, four phase method:
 - Phase 1: formally state system requirements by specifying intended properties;
 - Phase 2: create an abstract macroscopic model and model checker to verify properties;
 - Phase 3: use macroscopic model as guide for implementing system;
 - Phase 4: test the system using real robots.

References: Dudek et al. 1993, Brooks 1985, Brambilla et al. 2012.

Proposed Swarm UAS Taxonomy and Design Method

- Top-down, mission-driven design.
- Decentralized C2 architecture.
- Influenced by work of Brooks and Brambilla.

Swarm UAS Basic Intelligence, Surveillance, Reconnaissance (ISR) Mission at Tactics Level

Swarm Tactics Examples

Swarm UAS Ingress Tactic at Play Level

Swarm UAS Egress Tactic at Play Level

Swarm UAS Mission Architecture Example

State Diagram of Swarm vs. Swarm Mission at Tactics Level

Mission Architecture Summary

1 Mission	2 Tactics	3 Plays	4 Algorithms	5 Data
Air Battle: Swarm vs. Swarm	Swarm Ingress	Swarm launch (Min time to launch)	Sorting	Agent state and pose Number of agents Number of launchers
		Swarm transit to WP (Specified altitude)	Flocking	Agent state and pose Number of agents Ingress waypoint
		Swarm sensors activated	Sorting	Agent state and pose Number of agents Sensor range
	Swarm Search	Swarm random pattern	Biologically inspired	Agent state and pose Number of agents Reference positions Search area
	Swarm Track Target	Swarm distributed sensing	Nearest neighbor	Agent state and pose Target pose
	Swarm Attack	Swarm weapon fire	Greedy selection	Agent state and pose Target pose Weapon envelope
	Swarm Evade	Swarm disperse	Physicomimetic	Agent state and pose Number of agents Reference positions
		Swarm join	Physicomimetic	Agent state and pose Number of agents Reference positions
	Swarm Egress	Swarm transit to WP - Specified altitude	Flocking	Agent state and pose Number of agents Egress waypoint
		Swarm recover	Sorting	Agent state and pose Number of agents

- UAS doctrine has been ignored as a specifying design factor in swarm technology.
- Swarm research has focused on developing and varying individual agent behavior until achieving desired collective behavior.
- This research proposes a swarm UAS mission taxonomy designed to support top-down design methodology, using iterative, bottom-up feedback.

- Develop model-based systems engineering methods to design swarm UAS architecture from initial doctrine.
- Integrated swarm UAS design framework to support:
 - swarm UAS tactics development,
 - reduction in number of human operators,
 - mission and task-appropriate automation,
 - operationally suitable and effective systems.

References

- 1. U.S. Department of Defense. 2013. "Unmanned Systems Integrated Roadmap."
- 2. Finn, Anthony, Scheding, Steve. 2010. *Developments and Challenges for Autonomous Unmanned Vehicles*. Springer. doi:10.1007/978-3-642-10704-7.
- 3. Sahin, Erol. 2005. "Swarm Robotics: From Sources of Inspiration to Domains of Application," no. 631.
- Cao, Y.U., A.S. Fukunaga, A.B. Kahng, and F. Meng. 1997. "Cooperative Mobile Robotics: Antecedents and Directions." Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots 23: 226–34. doi:10.1109/IROS.1995.525801.
- 5. Beni, Gerardo, and Jing Wang. 1993. "Swarm Intelligence in Cellular Robotic Systems." *Robots and Biological Systems: Towards a New Bionics? NATO ASI Series Volume 102*, no. 2: 703–12. doi:10.1007/978-3-642-58069-7_38.
- 6. Beni, G. 2005. "From Swarm Intelligence to Swarm Robotics." *Swarm Robotics, Lecture Notes in Computer Science,* 3342, no. December. doi:10.1007/978-3-540-30552-1.
- 7. Frew, E.W., and T.X. Brown. 2008. "Airborne Communication Networks for Small Unmanned Aircraft Systems." *Proceedings of the IEEE* 96 (12). doi:10.1109/JPROC.2008.2006127.
- 8. Chung, Timothy, Kevin Jones, Michael Day, Marianna Jones, and Michael Clement. "50 vs. 50 by 2015: Swarm vs. Swarm UAV Live-Fly Competition at the Naval Postgraduate School." 2013 Proceedings of AUSVI (50).
- 9. Harriott, Caroline E, Adriane E Seiffert, Sean T Hayes, and Julie A Adams. 2014. "Biologically-Inspired Human-Swarm Interaction Metrics," 1471–75.
- 10. Cummings, Mary L. 2004. "Human Supervisory Control of Swarming Networks." *Annual Swarming: Autonomous Intelligent Networked,* 1–9. http://web.mit.edu/aeroastro/labs/halab/papers/cummingsswarm.pdf.
- Cummings, Mary L., and Paul Mitchell. 2006. "Automated Scheduling Decision Support for Supervisory Control of Multiple UAVs." *Journal of Aerospace Computing, Information, and Communication* 3 (6): 294–308. doi:10.2514/1.19599.
- Cummings, M, S Bruni, S Mercier, and Pj Mitchell. 2007. "Automation Architecture for Single Operator, Multiple UAV Command and Control." *The International C2 Journal* 1: 1–24. <u>http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA478338</u>.
- 13. Carr, Lee, Project Leader, Kristen Lambrecht, and Greg Whittier. 2003. "Unmanned Aerial Vehicle Operational Test and Evaluation Lessons Learned," no. IDA Paper P-3821.

References contd.

- 14. Director Operational Test & Evaluation. 2007. "Air Force Programs: Global Hawk High Altitude Endurance Unmanned Aerial Vehicle, RQ-4." <u>http://www.dote.osd.mil/pub/reports/FY2007/pdf/other/2007DOTEAnnualReport.pdf</u>.
- 15. Director Operational Test & Evaluation. 2008. "Air Force Programs: MQ-9 Reaper Hunter Killer Armed Unmanned Aircraft System (UAS)." <u>http://www.dote.osd.mil/pub/reports/fy2011/pdf/af/2011mq9reaperuas.pdf</u>.
- 16. Director Operational Test & Evaluation. 2015. "FY15 Navy Programs: RQ-21A Blackjack Unmanned Aircraft System (UAS)." <u>http://www.dote.osd.mil/pub/reports/FY2015/pdf/navy/2015rq21a_blackjack.pdf</u>.
- 17. NATO Standardization Organization. "Allied Administrative Publication-6 (AAP-6): NATO Glossary of Terms and Definitions." (2010).
- 18. Arquilla, John, Ronfeldt, David. 1997. "In Athena's Camp: Preparing for Conflict in the Information Age." Rand Corporation.
- 19. Hart, D.M., and P.A. Craig-Hart. 2004. "Reducing Swarming Theory to Practice for UAV Control." 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720) 5: 3050–63. doi:10.1109/AERO.2004.1368111.
- 20. Arquilla, John, Rondfeldt, David. 2000. "Swarming and the Future of Conflict." *Defense*.
- 21. Arquilla, John. 2010. "The New Rules of War." Foreign Policy 24. February (178): 60–67. doi:10.2307/20684990.
- 22. US Department of Defense. 2010. "Irregular Warfare : Countering Irregular Threats Joint Operating Concept."
- 23. Clough, Bruce T. 2002. "Metrics, Schmetrics! How The Heck Do You Determine A UAV's Autonomy Anyway." 2002 Performance Metrics for Intelligent Systems Workshop. http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA515926.
- 24. Dekker, Anthony. 2008. "A Taxonomy of Network Centric Warfare Architectures." Systems Engineering/Test and Evaluation, 1–14. <u>http://members.ozemail.com.au/~dekker/SETE.Dekker.final.pdf</u>.
- 25. Weiskopf, Frank, Tim Gion, Dale Elkiss, Harold Gilreath, Jim Bruzek, Robert Bamberger, Ken Grossman, and Jordan Wilkerson. "Control of Cooperative, Autonomous Unmanned Aerial Vehicles." In *Proceedings of First AIAA Technical Conference and Workshop on UAV, Systems, Technologies, and Operations*. 2002.
- 26. Parunak, H. Van Dyke. 2003. "Making Swarming Happen." In *Conference on Swarming and C4ISR, Tysons Corner, VA 3JAN2003*.
- 27. Gerkey, Brian P., Mataric, Maja J. 2004. "A Formal Analysis and Taxonomy of Task Allocation in Multi-Robot Systems." The International Journal of Robotics Research 23 (9): 939–54. doi:10.1177/0278364904045564.

WWW.NPS.EDU

References contd.

- 28. Dudek, Gregory, Michael R M Jenkin, Evangelos Milios, and David Wilkes. 1993. "A Taxonomy for Multi-Agent Robotics." *Autonomous Robots* 29.
- 29. Brambilla, Manuele, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. 2013. "Swarm Robotics: A Review from the Swarm Engineering Perspective." *Swarm Intelligence* 7 (1): 1–41. doi:10.1007/s11721-012-0075-2.
- 30. Brooks, Rodney A. "A robust layered control system for a mobile robot. "*Robotics and Automation, IEEE Journal of* 2, no. 1 (1986): 14-23.
- 31. Brambilla, Manuele, Carlo Pinciroli, Mauro Birattari, and Marco Dorigo. 2012. "Property-Driven Design for Swarm Robotics." AAMAS 2012 International Conference on Autonomous Agents and Multiagent Systems, no. June: in – press. http://iridia.ulb.ac.be/~mbrambilla/pdf/Bra-aamas2012.pdf.
- 32. Coppin, Gilles, and Francois Legras. 2012. "Autonomy Spectrum and Performance Perception Issues in Swarm Supervisory Control." *Proceedings of the IEEE* 100 (3): 590–603. doi:10.1109/JPROC.2011.2174103.
- 33. Goldman, Robert P, Christopher A Miller, Harry B Funk, and John Meisner. 2005. "Optimizing to Satisfice : Using Optimization to Guide Users 1 Introduction." *Interfaces*, no. January: 18–20.
- 34. Simmons, Reid, Apfelbaum, David, Fox, Dieter, Goldman, Robert P., Zita Haigh, Karen, Musliner, David J., Pelican, Michael, Thrun, Sebastian. 2000. "Coordinated Deployment of Multiple, Heterogeneous Robots." *Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems*, 127–40. doi:10.1007/978-3-319-10969-5.
- 35. Chung, Timothy H. 2015. "Dr. Chung Directed Study Notes1."
- 36. Matarić, M J. 1995. "Issues and Approaches in the Design of Collective Autonomous Agents." *Robotics and Autonomous Systems* 16(2-4) (January 1994): 321–31.
- 37. Senanayake, Madhubhashi, Ilankaikone Senthooran, Jan Carlo, and Hoam Chung. 2015. "Search and Tracking Algorithms for Swarms of Robots : A Survey." *Robotics and Autonomous Systems*. Elsevier B.V. doi:10.1016/j.robot.2015.08.010.
- 38. Dudek, Gregory, and Michael Jenkin. Computational principles of mobile robotics. Cambridge university press, 2010.
- 39. Mitchell, Melanie. 2009. Complexity: A Guided Tour. Oxford University Press.
- 40. Reynolds, Craig W. 1987. "Flocks, herds and schools: A distributed behavioral model." In ACM SIGGRAPH computer graphics, vol. 21, no. 4, pp. 25-34.
- 41. Whitcomb, C., Giammarco, K. and Hunt, S., 2015. *An instructional design reference mission for search and rescue operations*. Monterey, California. Naval Postgraduate School.

WWW.NPS.EDU